3.3.7 \(\int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx\) [207]

3.3.7.1 Optimal result
3.3.7.2 Mathematica [A] (verified)
3.3.7.3 Rubi [A] (verified)
3.3.7.4 Maple [A] (verified)
3.3.7.5 Fricas [A] (verification not implemented)
3.3.7.6 Sympy [F]
3.3.7.7 Maxima [B] (verification not implemented)
3.3.7.8 Giac [F]
3.3.7.9 Mupad [F(-1)]

3.3.7.1 Optimal result

Integrand size = 25, antiderivative size = 120 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\frac {7 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {7 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}} \]

output
7/4*a^(3/2)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+1/2*a^2*co 
s(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+7/4*a^2*sin(d*x+c)*cos( 
d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(1/2)
 
3.3.7.2 Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.77 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (7 \sqrt {2} \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \sqrt {\cos (c+d x)} \left (6 \sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right )\right )}{8 d} \]

input
Integrate[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2),x]
 
output
(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(7*Sqrt[2]*ArcSin[Sqrt[2]*S 
in[(c + d*x)/2]] + 2*Sqrt[Cos[c + d*x]]*(6*Sin[(c + d*x)/2] + Sin[(3*(c + 
d*x))/2])))/(8*d)
 
3.3.7.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.98, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 3242, 27, 2011, 3042, 3249, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}dx\)

\(\Big \downarrow \) 3242

\(\displaystyle \frac {1}{2} \int \frac {7 \sqrt {\cos (c+d x)} \left (\cos (c+d x) a^2+a^2\right )}{2 \sqrt {\cos (c+d x) a+a}}dx+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {7}{4} \int \frac {\sqrt {\cos (c+d x)} \left (\cos (c+d x) a^2+a^2\right )}{\sqrt {\cos (c+d x) a+a}}dx+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 2011

\(\displaystyle \frac {7}{4} a \int \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}dx+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7}{4} a \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3249

\(\displaystyle \frac {7}{4} a \left (\frac {1}{2} \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7}{4} a \left (\frac {1}{2} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3253

\(\displaystyle \frac {7}{4} a \left (\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}+\frac {7}{4} a \left (\frac {\sqrt {a} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )\)

input
Int[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2),x]
 
output
(a^2*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]]) + (7* 
a*((Sqrt[a]*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + ( 
a*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]])))/4
 

3.3.7.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 2011
Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> 
 Simp[(b/d)^m   Int[u*(c + d*v)^(m + n), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c + d*x 
, a + b*x])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3242
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x 
])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Simp[1/(d*(m 
+ n))   Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c* 
(m - 2) + b^2*d*(n + 1) + a^2*d*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 
 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c 
 - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[ 
n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[ 
c, 0]))
 

rule 3249
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x]) 
^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[2*n*((b*c + a*d)/(b*( 
2*n + 1)))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], 
 x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 
0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 
3.3.7.4 Maple [A] (verified)

Time = 11.74 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.22

method result size
default \(\frac {\left (2 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+7 \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+7 \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {\cos }\left (d x +c \right )\right ) a}{4 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(146\)

input
int(cos(d*x+c)^(1/2)*(a+cos(d*x+c)*a)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/4/d*(2*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+7*sin(d*x 
+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+7*arctan(tan(d*x+c)*(cos(d*x+c)/(1+c 
os(d*x+c)))^(1/2)))*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^(1/2)/(1+cos(d*x+c 
))/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a
 
3.3.7.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.86 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\frac {{\left (2 \, a \cos \left (d x + c\right ) + 7 \, a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

input
integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")
 
output
1/4*((2*a*cos(d*x + c) + 7*a)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))* 
sin(d*x + c) - 7*(a*cos(d*x + c) + a)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + 
 a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c) + d)
 
3.3.7.6 Sympy [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\int \left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \sqrt {\cos {\left (c + d x \right )}}\, dx \]

input
integrate(cos(d*x+c)**(1/2)*(a+a*cos(d*x+c))**(3/2),x)
 
output
Integral((a*(cos(c + d*x) + 1))**(3/2)*sqrt(cos(c + d*x)), x)
 
3.3.7.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1080 vs. \(2 (100) = 200\).

Time = 0.47 (sec) , antiderivative size = 1080, normalized size of antiderivative = 9.00 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\text {Too large to display} \]

input
integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")
 
output
1/16*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) 
^(1/4)*((a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x 
+ 2*c) + a*sin(2*d*x + 2*c) - (a*cos(2*d*x + 2*c) - 6*a)*sin(1/2*arctan2(s 
in(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos 
(2*d*x + 2*c) + 1)) + (a*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c) 
, cos(2*d*x + 2*c))) - a*cos(2*d*x + 2*c) + (a*cos(2*d*x + 2*c) - 6*a)*cos 
(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 6*a)*sin(1/2*arctan2(s 
in(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 7*(a*arctan2((cos(2*d*x 
 + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*ar 
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c 
), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 
2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d 
*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2* 
arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x 
 + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
+ 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - 
a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 
1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arc 
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x 
+ 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*...
 
3.3.7.8 Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\cos \left (d x + c\right )} \,d x } \]

input
integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate((a*cos(d*x + c) + a)^(3/2)*sqrt(cos(d*x + c)), x)
 
3.3.7.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx=\int \sqrt {\cos \left (c+d\,x\right )}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \]

input
int(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^(3/2),x)
 
output
int(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^(3/2), x)